MATH SOLVE

2 months ago

Q:
# What is the distance between points A(3, 12) and B(6, 15)? Round to the nearest whole number.

Accepted Solution

A:

To calculate the distance between two points, we can use a formula that is a variation Pythagorean Theorem. Look:

[tex]\mathsf{d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}}[/tex]

"d" represents the distance and coordinates are expressed as follows: (x, y)

Let's go to the calculations.

[tex]\mathsf{d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}}\\\\ \mathsf{d=\sqrt{(6-3)^2+(15-12)^2}}\\\\ \mathsf{d=\sqrt{(3)^2+(3)^2}}\\\\ \mathsf{d=\sqrt{9+9}}\\\\ \mathsf{d=\sqrt{18}}\\\\ \mathsf{d=4,24264068711928514640...}\\\\ \underline{\mathsf{d\approxeq4}}[/tex]

The answer is 4 u.c.

[tex]\mathsf{d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}}[/tex]

"d" represents the distance and coordinates are expressed as follows: (x, y)

Let's go to the calculations.

[tex]\mathsf{d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}}\\\\ \mathsf{d=\sqrt{(6-3)^2+(15-12)^2}}\\\\ \mathsf{d=\sqrt{(3)^2+(3)^2}}\\\\ \mathsf{d=\sqrt{9+9}}\\\\ \mathsf{d=\sqrt{18}}\\\\ \mathsf{d=4,24264068711928514640...}\\\\ \underline{\mathsf{d\approxeq4}}[/tex]

The answer is 4 u.c.